

ML4062-MCB-112

Technical Reference

MSA Compliant QSFP-DD800 MCB

Table of Contents

1.	Introduction	3
2.	Key Features	3
3.	ML4062-MCB-112 Hardware	3
3	3.1 Power-Up	3
3	3.2 Operating Conditions	4
3	3.3 LED Indicators	4
3	3.4 Low Speed Signals	5
	3.4.1 External I2C	5
	3.4.2 External HW Control	5
4.	ML4062-MCB-112 Software	6
4	l.1 USB Driver	6
4	1.2 GUI	6
5.	Hardware Revision	6
6.	Firmware Revision	7
7.	Bootloader	7
	ble of Figures	
_	ure 1: On-board LEDs	
_	ure 2: External I2C	
_	ure 3: External Control Signals	
Fiσι	ure 1. Low Speed Signals Schematics	5

1. Introduction

The ML4062-MCB-112 is designed to provide an efficient and easy method of programming and testing 800G QSFP-DD transceivers and active optical cables. It includes a complete user-friendly GUI supporting all features defined by QSFP-DD800 MSA and simplifying configuration processes to enable intuitive memory map programming and testing. It is designed to simulate an ideal environment for QSFP-DD800 transceivers module testing, characterization and manufacturing.

2. Key Features

- √ Supports 8x112G interfaces
- ✓ I2C master driven from both on board microcontroller or external pin headers
- ✓ 2.4mm or 1.85mm Connectors
- ✓ Current Sense on each individual voltage net
- ✓ Matched differential trace length
- ✓ All 8 channels comes with matching trace length
- ✓ High performance signal integrity traces from K connectors to QSFP-DD host connector.
- ✓ On-board LEDs display MSA output alarm states
- ✓ On-board pin headers for MSA input control signals
- ✓ User friendly GUI for I2C R/W commands and loading custom MSA memory maps
- ✓ Four corner testing capability
- ✓ USB interface

3. ML4062-MCB-112 Hardware

The subsequent sections cover the essential parts in the hardware, for board operation and testing.

3.1 Power-Up

To power up the ML4062-MCB-112 host, steps are as follow:

- The host TOP is where the cage is mounted
- Two options are available to power up the board:
 - Using the four pins power connector (J43) that should be connected to 5V AND 3.3V taking into account pins distribution, where the SMD jumper (U1) must be populated
 - Using the banana plug (U6) that should be connected to 3.3V where the SMD jumper (U2) must be populated
- Connect the host to your PC using a Type-B mini to Type-A USB cable.

3.2 Operating Conditions

According to the powering method described in section 3.1, the input voltage supply must follow the table below.

Parameter	Symbol	Condition	Min	Typical	Max	Unit
+5	P5V	Supply from J43 (P5V pin)	-	5	-	
+3.3	P3V3	Supply from J43 (P3V3 Pin) OR banana plug U6	3.0	3.3	3.6	V

Table 1: Voltage Operating Conditions

The table below shows the impedance characteristics of the high speed channels.

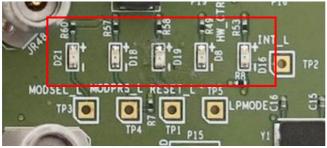

Parameter	Symbol	Condition	Min	Typical	Max	Unit
I/O Load	RI	AC-Coupled, Differential	90	100	110	Ω
Resistance						

Table 2: Channels Impedance characteristics

3.3 LED Indicators

The ML4062-MCB-112 includes on-board LEDs, for quick debugging and monitoring purposes. LEDs are summarized below:

- LED D3 indicates whether a USB cable is plugged or not.
- LEDs D2 and D4, colored green and red, respectively, are used for diagnostic purposes:
 - ✓ If D2 is on: USB is locked and device is recognized by the USB driver
 - ✓ If D4 is on: USB is not connected or USB driver is not found
 - ✓ If both are off: board is not powered correctly or firmware is corrupted
 - ✓ If both are blinking: the board is in Bootloader mode
- Led D8: LPMODE signal monitoring
- LED D19: RESET_L signal monitoring
- LED D16: INT_L signal monitoring
- LED D18: MODPRS L signal monitoring
- LED D21: MODSEL_L

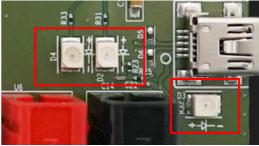


Figure 1: On-board LEDs

3.4 Low Speed Signals

3.4.1 External I2C

The I2C bus can be accessed externally using U156 pins. In this case a jumper should be placed on pin header P16 (HW_I2C) shown in the image below.

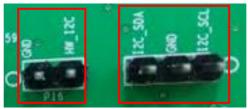
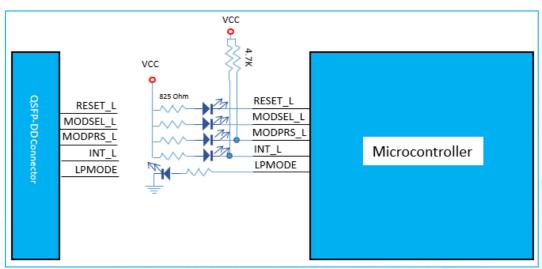


Figure 2: External I2C


3.4.2 External HW Control

Also Low Speed Signals are controllable using an external source, this can be done through control signals pin headers. In this case a jumper should be placed on pin header P19 (HW_CTRL) shown in the image below.

Figure 3: External Control Signals

The low speed signals circuit shown below shows the connection of these signals to the microcontroller and QSFP-DD connector.

Figure 4: Low Speed Signals Schematics

When the jumper is inserted on P19, the output signals are tri-stated from the microcontroller, and hence could be controlled from an external source.

4. ML4062-MCB-112 Software

The ML4062-MCB-112 is accessible and controlled through application software. This software is MSA compliant and provides a user-friendly interface to operate the board and access all its features. The communication between the ML4062-MCB-112 board and the software is established through USB connection.

4.1 USB Driver

In order to be able to communicate with the board, user need to install the USB driver of the ML4062-MCB-112. This is available on the website under the following link (USB Driver icon):

https://www.multilaneinc.com/product.php?pn=ML4062-MCB-112-24

Below is a brief guide on how to install the USB Driver:

- Power up the board
- Connect the board to the PC through USB cable
- Download the USB driver file
- Go to "Device Manager"
- Find the target device that need to install the driver
- Right-click on the device and select Update Driver Software
- Select Browse my computer for driver software
- Browse you PC and select the driver file
- Click Next and wait until the driver is installed

4.2 GUI

For GUI installation and operation, refer to the link below. GUI user manual is available for detailed description (CMIS GUI Manual).

https://www.multilaneinc.com/product.php?pn=ML4062-MCB-112-24

5. Hardware Revision

- ML4062-MCB-112 RevA1: Initial Version
- ML4062-MCB-112 RevB1:
 - SI optimization
 - R80, R81 replaced with 0.004 ohm for higher current measurement
- ML4062-MCB-112 RevC1: SI optimization
- ML4062-MCB-112_RevC2: SI optimization

6. Firmware Revision

- **ML4062-MCB_V1_6**: latest FW revision, compatible with the ML4062-MCB-112_RevC2 hardware.

7. Bootloader

Accessing in bootloader mode allows the user to reprogram the microcontroller, this is done as described below:

- 1. Connect a jumper on (P15) situated close to the microcontroller.
- 2. Connect a USB cable between the PC and Board.
- 3. Power up the board with a +3.3V supply.
- 4. LEDs (D2, D4) start blinking.
- 5. Remove jumper.
- 6. Open the software "Microchip USB HID Bootloader v2.3".
- 7. Click on "Open Hex File".
- 8. Choose the new FW to download.
- 9. Click on "Program/Verify".
- 10. Once the software finishes programming press on "Reset Device".
- 11. After reset the Firmware is successfully updated.

Revision History

Date	Revision	Description	
8/14/2024	0.1	Initial Version	
8/20/2024	0.2	Updated section 2	

North America

48521 Warm Springs Blvd. Suite 310 Fremont, CA 94539 USA +1 510 573 6388 Worldwide

Houmal Technology Park Askarieh Main Road Houmal, Lebanon +961 5 941 668 Asia

14F-5/ Rm.5, 14F., No 295 Sec.2, Guangfu Rd. East Dist., Hsinchu City 300, Taiwan (R.O.C) +886 3 5744 591

nnov